
Rust Language Updates:
Arbitrary Self Types and

In-place initialization
Xiangfei Ding

Kangrejos 2025, Oviedo, Spanien

Outline

● #![feature(arbitrary_self_types)] in 2025
○ The many, many and many ways to enable it
○ Trait evolution…?
○ The Great Split

● In-place initialization
○ What is it and why does it matter to us?
○ Also the many, many and many ways to enable it
○ Our roadmap to enable it

arbitrary_self_types

● Extension to types that a method receiver variable self can take
○ Such as Box and Rc

impl MyStruct {
 fn method1(&self) {}

 fn method2(self: &Self) {}

 fn method3(self: Box<Self>) {}

 fn method4(self: Pin<&mut MyStruct>) {}
}

https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=b18139121c063db8a24864b4bd10fdac

arbitrary_self_types and why do we need it?

● Refined method receiver type encodes more constraints
○ Pin<&mut T>, Arc<T>

● Make Smart Pointers productive and useful
○ #![feature(SmartPointerCoercePointee)]
○ CppRef<T>

S. 25

https://kangrejos.com/2024/Rust%20references%20considered%20harmful.pdf
https://kangrejos.com/2024/SmartPointer%20and%20PinCoerceUnsized.pdf

arbitrary_self_types: the method probing

● So when the code says value.as_ref(), how does it know which method
is called?

● Suppose value is a smart pointer like Arc from kernel…
● Should we call method that is inherent to Arc? Or a trait method

from AsRef because Arc implements it?
● Or alternatively we should dereference the Arc once and see if as_ref can

be applied on the dereference data?

Arc<T>

https://rust.docs.kernel.org/kernel/sync/struct.Arc.html

arbitrary_self_types: the method probing (cont.)

● When only a method name is given, it is possible that an applicable method
will appear as we repeatedly dereference the (smart) pointer along the way.

● arbitrary_self_types as of 2025: we probe deeper for applicable
method, not by dereferencing, rather by chasing down the Receiver trait

arbitrary_self_types: the method probing (cont.)

struct Inner;
impl Inner {
 fn resolve(self: Myself) {}
}
struct Myself;
impl Receiver for Myself {
 type Target = Inner;
}

let value: Box<Box<Box<Myself>>>;

value.resolve(); // <-- here

https://play.rust-lang.org/?version=nightly&mode=debug&edition=2024&gist=49af6a19e87a428d38b7c4607308664f

arbitrary_self_types: the method probing (cont.)

struct Inner;
impl Inner {
 fn resolve(self: Myself) {}
}
struct Myself;
impl Receiver for Myself {
 type Target = Inner;
}

let value: Box<Box<Box<Myself>>>;

value.resolve(); // <-- here

https://play.rust-lang.org/?version=nightly&mode=debug&edition=2024&gist=49af6a19e87a428d38b7c4607308664f

arbitrary_self_types: a historical design

● It turns out to be a design that has a path dependent on how this feature
worked in the past

○ Receiver was not there
○ In its place is Deref
○ Types like Box, Arc, Rc, Pin are marked with a trait LegacyReceiver

● At the moment there is strong tie between Deref and Receiver
○ Conceptually if a type T implements Deref, T implements Receiver as well
○ Problem: Pin<T> is a valid method receiver under the LegacyReceiver mechanism, but it is

not anymore under the Receiver mechanism
● And two traits are not fit to each other somehow…

https://archive.ph/GRX1D

arbitrary_self_types: many ways to do it

● April 2025: Make Receiver a supertrait of Deref?
○ pub trait Deref: Receiver { .. }
○ The idea is to just make it work for Deref
○ We need the next solver.

● June 2025: Okay, can we evolve the Deref trait to introduce this supertrait
relationship through an language mechanism?

○ More on this later
● Benno, August 2025: two traits are not fit to each other somehow…

arbitrary_self_types: a better model

● Why does Receiver have to couple with Deref from the start?
○ Deref: a conforming type works like a pointer to another type
○ Receiver: a conforming type allows itself to

■ Act like a method receiver, being the type of the variable self and
■ Indirectly dictates the type of Self

● “Interesting” consequences
○ A method using MutexGuard as self?

fn method(self: MutexGuard<’_, Self>)

○ Deref target must be the same as Receiver target, but this rule can be too strict
● Let us separate them!

https://play.rust-lang.org/?version=nightly&mode=debug&edition=2024&gist=372303caf79fa5b69ebd848c8305e937

arbitrary_self_types: a better model

● Let us separate them!

arbitrary_self_types: a better model

https://gist.githubusercontent.com/dingxiangfei2009/fb0dd3c7217416f7e1e7755a348c347e/raw/9880bcb9f6b1abd3fa79aa4b5c4928c5985481a2/Revised%2520Receiver%2520Chain.svg

arbitrary_self_types: next step

● Fix diagnostics in #146095
● Provide a summary of changes to the method probing
● Document the language changes in the Rust Reference

https://github.com/rust-lang/rust/pull/146095

Digression: trait evolution

● Trait evolution would help with landing arbitrary_self_types if we stay with the
design to couple Deref and Receiver, but it is also useful so that impact on
downstream trait implementors from a trait refactor is minimised.

trait MegaTrait {
 type SomeType;
 fn do_one_thing();
 fn do_another_thing();
}

trait SmallerTrait {
 type SomeType;
 fn do_one_thing();
}

trait MegaTrait: SmallerTrait
{

auto impl SmallerTrait;
 fn do_another_thing();
}

RFC 3851
will allow us to
refactor like this

https://github.com/rust-lang/rfcs/pull/3851

In-place initialization

● Initializing data in a pre-allocated place of memory
○ Kernel: self-referential data structures like linked lists
○ KBox::pin_init

● Also important in every ecosystem when large data structures
are concerned

https://github.com/torvalds/linux/blob/1519fc7cd3e129f6a95143cdc92f01ba21a3c266/rust/pin-init/examples/linked_list.rs#L35

In-place initialization

● We love pin_init! and we would like to make a language feature out of it
● A few basic design axioms for assessment

○ Explicit syntactical signal
○ Composability
○ Fallibility
○ Pinned place
○ Language-assisted value lifecycle management

■ Guaranteed clean-up on failure

In-place initialization: the many, many ways to enable it

● Three approaches
● The init expression (Alice, Benno)

○ Write your struct and enum expressions as usual
○ … and we compile it into an impl PinInit for you
○ Clearly defined trait interface

KBox::pin_init(init MyDriver {
 index: init_my_index(),
 data: [0u8; 2048] // big, but also initialized in-place
})

In-place initialization: the many many ways (cont.)

● out-pointer (Taylor Cramer. et al.)
○ Borrow checker has tracking on initialization state of struct fields

○ What is stopping us is a way to lend out uninitialized memory to write data into

● Guaranteed Named Emplacement, aka GNE (Olivier)
○ Still in conception phase
○ In code generation, function return places are implicitly passed down

let _ = x.a; // Drop
x.a = MyStruct;

let outptr = &out place;
outptr.a = MyStruct;
// place is initialized

https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=b10eb4a37901513ebefd6aaa1b9eed2a

In-place initialization: the many many ways matrix

Composability Fallibility Explicit syntax Pinnedness Lifecycle mgmt

init ✓ ? ✓ ? ✓

outptr ✓ ✓ ✓ ✓ ?

GNE ? ✓ x ✓

In-place initialization: roadmap

● 2025: Continue with nightly experiment on init expression
● 2025-2026: Investigation into out-pointer

○ Formulate the proposal draft here at Kangrejos :construction:
● Follow-up with GNE proposals
● Implementation (?)

Q & A

Rust Language Updates:
Arbitrary Self Types and

In-place initialization
Xiangfei Ding

Kangrejos 2025, Oviedo, Spanien

